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Absfract-The effect of the thermal conductivity of the condenser material on dropwise condensation heat 
transfer is studied theoretically. By taking account of the contribution of the droplet resistance in the 
individual drop size class to the thermal resistance in transient dropwise condensation, a fundamental 
differential equation describing the constriction resistance caused by the inhomogeneity of surface heat 
flux is derived. It is found from the non-dimensionalized fundamental equation that the constriction 
resistance can be determined by a Biot number defined by the interfacial heat transfer coefficient, the 
departing drop radius and the surface thermal ~nductivity, in addition to a few ch~acte~stic parameters. 
By applying the so-called equilib~um region of small drops as the drop size d~s~ibution, this equation is 

solved numerically so that the effects of these parameters on the heat transfer coeacient are presented. 

1. INTRODUCTION 

ALTEKXJGH considerable progress has been made in 
the study on the steam-side mechanism of dropwise 
condensation, the effects of the thermal properties of 
the condenser material on the heat transfer rate are 
less well understood. In dropwise condensation, a very 
wide range of drop size exists on the condensing 
surface, extending from the primary drop to the larg- 
est departing drop. The condensing surface covered 
by the smaller active drops yields an extremely high 
heat transfer rate, while the surface under the larger 
drops serves as an insulated surface. The nonuni- 
formity of surface heat flux leads to the constric- 
tion of heat flow lines near the condensing surface and 
increases the thermal resistance in the same manner 
as a contact resistance between the solids. The 
additional thermal resistance is termed as a con- 
striction resistance and its fundamental explanation 
was first given by Mikic [If. The constriction resis- 
tance comes up as an important problem for a hydro- 
phobic polymer coating with low thermal conductivity 
as well as for a practical condenser material. 

Experimental evidence for the constriction resis- 
tance has been presented by several investigators. Tan- 
ner et al. [2] compared the heat transfer coefficients 
in the dropwise condensation of steam at atmospheric 
pressure using copper and stainless steel surfaces, 
Griffith and Lee f3] conducted the experiments with 
the horizontal downward surfaces made of copper, 
zinc, and stainless steel. Also, Wilkins and Bromley 
[4] measured the heat transfer coefficients on five kinds 
of vertical pipes. The above investigators pointed out 

that the experimental heat transfer coefficient 
decreased with the surface thermal conductivity. On 
the other hand, Aksan and Rose [5] measured the heat 
transfer coefficients on copper and mild steel surfaces 
very carefully, and they obtained an opposing result 
that there was no significant difference between them. 
Most of these workers obtained the condensing sur- 
face temperature by the extrapolation method using 
the t~~rat~~ profile in the condenser block. Since 
the uncertainty in inferring the surface temperature 
from the extrapolation increases with decreasing sur- 
face thermal conductivity, many arguments have been 
made concerning the uncertainty of the experimental 
heat transfer coefficient together with some dis- 
cussions on the effect of surface chemistry. Following 
them, Hannemann and Mikic [6] conducted the pre- 
cise measurement of the surface temperature using 
a thin-film resistance thermometer deposited on the 
stainless steel surface, and they obtained the lower 
heat transfer coefficient than that for the copper con- 
densing surface. At the same time, ~nnema~ and 
Mikic [7] made a numeri~a1 analysis which indicated 
the dependence of the heat transfer coefficient on the 
thermal conductivity of the condenser material. How- 
ever, Stylianou and Rose [8] gave once more an oppos- 
ing experimental result using copper, bronze, and ptfe 
surfaces. Therefore, it is impossible to conclude from 
ihe above studies whether or not the const~ctio~ 
resistance plays an important role in dropwise con- 
densation heat transfer. 

This paper puts forward the constriction resistance 
theory on the basis of numerical work by Hannemann 
and Mikic [7]. A fundamental differentia1 equation 
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NOMENCLATURE 

il area I’,,, thermodynamic critical drop radtus 

Bi, Biot number, h, * r,,,/I., L.u departing drop radius 
f’(r) fraction of the area covered by drops with i:,,.,, instantaneous effective maximum drop 

radii smaller than r radius 

11 heat transfer coefficient “ / characteristic drop radius defined by 

k,, latent heat of vaporization equation (I 6) 

11, interfacial heat transfer coefficient 7, local condensing surface tcmperaturc 

L mean free path r, mean surface temperature 

N density of drop size distribution T‘,,, weighted mean surface temperature 

LI mean heat flux defined by equation (5) 

q/ local heat flux 7, saturation temperature 

R(r) thermal resistance between the vapor and 1 time 
the condenser surface covered by I’&, specific volume of vapor. 

drops with radii smaller than r 

4 constriction resistance Greek symbols 

Ri dr constriction resistance caused by drops ^A condensation coefficient 

with radii between r and r + dr A thermal conductivity of condenser 

Rd thermal resistance of a single drop material 

R, gas constant 2, thermal conductivity of liquid 

7% thermal resistance in the absence of t dimensionless drop radius. r,‘~,,,,~ 

constriction effect ‘i,, dimensionless critical drop radius, 

72 instantaneous thermal resistance in “C,, 1 ~,mx 
transient dropwise condensation <I dimensionless characteristic drop radius. 

R time-averaged thermal resistance I.,,‘/, 111.1”. 
R* dimensionless thermal resistance. R. h, 7 dimensionless time. /:T,, 

Y drop radius 51, sweeping period. 

describing the constriction resistance is derived by 
formulating the contribution of the drop resistance in 
the individual drop size class to the total thermal 
resistance. The characteristics of the fundamental 
equation are fully analyzed and the effects of each 

parameter are shown in a more gcncralized form than 
that by the numerical study. 

2. THEORETICAL BACKGROUND 

Mikic [I] pointed out the effect of constriction rcsis- 
tance as follows. The mean heat flux q through the 
condensing surface A is expressed with the saturation 

temperature T,, the local condensing surface tem- 
perature 7,, and the local vapor-to-surface thermal 

resistance R, as 

In an extreme case where the thermal conductivity of 
the condenser material is infinitely high, 7, is uniform 
and equal to the mean surface temperature ?,. Then. 
q is written as 

I 

RO 

For a practical condenser material having a finite 
thermal conductivity, 7, is not uniform but variable 
depending on the local heat flux. In this case, by 
introducing a weighted mean surface temperature 

T,,, = ; (5) 

we can express the mean heat ilux as 

T, - T,,,, 
‘= R~---' (6) 

0 

Usually the heat transfer cocffficient /Z for dropwisc 
condensation is defined by 

Therefore, the thermal resistance of dropwise con- 
densation is expressed as 

where 



A theoretical study on the constriction resistance in dropwise condensation 2781 

From the above equation, we can find that the thermal 
resistance in dropwise condensation is expressed as a 
sum of two resistances in series, namely, the surface- 
averaged thermal resistance R,, through the droplets 
and the constriction resistance R, caused by the non- 
uniformity of the surface temperature. 

A thorough understanding of the constriction 
resistance phenomena requires knowledge of the 
drop size distribution on the condensing surface. A 
comprehensive theory for the drop size distribution 
has been developed [9, IO] from the viewpoint that the 
so-called steady dropwise condensation is, in reality, 
composed of transient dropwise condensation occur- 
ring repeatedly on the tracks left by departing drops. 
From the theory, we can estimate the instantaneous 
drop size distribution by the following equation for 
the case that the nucleation-site density is infinitely 
high : 

(9) 

where N(r, t) is the density of drop size distribution 
defined so that there are N(r, t) dr drops per unit con- 
denser area having radii in the interval [r, r + dr]. The 
drop radius f,,,,,, is termed as an instantaneous effective 
maximum drop size, which grows with time t from the 
start of transient condensation and it can be connected 
with the departing drop radius r,,, by 

(10) 

where r0 is the mean sweeping period of drop depar- 
ture. Equation (9) is applicable to the equilibrium 
region of small drops [9] which develops in the very 
wide range of drop sizes : 20 < r < 0.2:,,,,,, where 
D is the spacing between the nucleation sites. This 
theoretical expression has been confirmed to be in 
good agreement with the experimental drop size dis- 
tribution [l 11. The drop size distribution in the steady 
dropwise condensation is obtained by averaging the 
instantaneous distribution density over the time inter- 
val z0 [12]. 

3. CONSTRICTION RESISTANCE THEORY 

3.1. Derivation of basic equation 
In analyzing the effects of spatial and time-wise 

nonuniformity of the surface heat flux due to the time- 
dependent drop size distribution, it is considered that 
the transient dropwise condensation starts simul- 
taneously at time t = 0 throughout a considerably 
large, initially bare surface. Here, we assume that the 
time response of the surface temperature to the vari- 
ation of drop size distribution is sufficiently rapid such 
that the thermal capacity effect can be neglected. From 
the assumption, the instantaneous thermal resistance 
in the transient dropwise condensation can be deter- 

mined using the transient drop size distribution and 
the quasi-steady heat conduction equation. The ther- 
mal resistance in the steady dropwise condensation 
can be obtained by taking a time-average over a 
sweeping cycle of falling drops. The assumption is 
based on the facts that the big drops yielding the large 
constriction do not change their locations so rapidly 
and that the temperature variation by the small active 
drops is much smaller than that by the big drops. 

At a certain time t in the transient dropwise con- 
densation, let R(r, t) denote the vapor-to-surface ther- 
mal resistance in the fractional surface area f(r, t) 
covered by the drops having radii smaller than r, as 
shown in Fig. 1. If the thermal resistance is free of 
constriction, the droplet resistance R, per unit area 
having radii in the interval [r, r +dr] is accompanied 
with R(r, t) in parallel 

f(r+dr,t) _ f(r9t) I f(r+dr,t)-S(r,t) 
4 

(ll) 

R(r, 0 R* 

where R, is the parallel resistance. In the practical 
condenser material, constriction resistance Ri dr 
caused by the drops of radii r to r + dr takes part in 
the thermal resistance in series as equation (8) 

R(r+dr,t) = %-kRidr. (12) 

By eliminating R, from equations (11) and (12), and 
by ignoring terms of second and higher orders of 
dr, we obtain the following fundamental differential 
equation : 

8R 1 af --- -R+%!?=R’, 
ar f & f dr R, ’ (13) 

Here, the additional constriction resistance Ridr is 
evaluated by the adiabatic cylinder model as shown 
in Fig. 2. Since the fractional area covered by drops 
with radii in [r, r+dr] is small in comparison with 
f(r, t), it is reasonable to consider that such large 
drops are arranged with enough spacing between 
them. In this model, a large drop with a thermal 
resistance Rd is in the center of the cylinder, and is 
surrounded by drops with radii smaller than r form- 

ing thermal resistance R(r, t). For simplicity, drops 
are assumed to be hemispherical. From the calculation 

0001 0.01 01 1.0 

Drop radius r, mm 

FIG. 1. Typical instantaneous drop size distribution in the 
transient dropwise condensation. 
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Large drop 
\ I Area covered by drops 

Rd with radii smalkr thort rC 

Ra = R(rJ 

f-j ‘A, ;n’ K -I 

FK. 2. Adiabatic cylinder model 

of the surface temperature distribution. Ri dr is 
obtained as 

(14) 

The derivation is given in the Appendix. 
The thermal resistance through a hemispherical 

droplet R, is expressed from the substantial drop 
growth rate by Umur and Griffith [13], which is 

approximated by [ 141 

Here, rcrl is the thermodynamic critical drop radius 

[ 151, and r, the following characteristic drop size at 
which the interfacial thermal resistance and the con- 
duction resistance through the drop approximately 
balance [IO] : 

(16) 

where 1, is the thermal conductivity of the liquid. The 
interfacial heat transfer coefficient h, is given by [ 161 

2x 1 h,g 
h, = - -~ - ~~- - -~ 

2%0.78% J(2zRgT,) ugTs 
(17) 

where R, is the gas constant, cg the specific volume of 
the vapor, h, the latent heat of vaporization and r the 
condensation coefficient with a value of 0.4 for low 
pressure steam [ 121. 

Equation (13) is a Riccati differential equation, but 
it is difficult to obtain an analytical solution except 
for the two limits of 1, -+ m and ;1, --f 0. In the former 
case (&, + x), i.e. R, = 0, equation (13) has the fol- 
lowing solution : 

(18) 

The solution is also obtained from the physical mean- 
ing that the heat transfer coefficient in the absence of 
constriction resistance is given as a total conductance 

for all drops. In the latter case (1, --t 0). equation (13) 
has the solution 

,j’(r. t)R(r, t) = 
? 
‘R, ‘.’ dr. (19) 

(‘I 

Here, let us consider the physical meaning of this 
equation. If we denote the local heat flux as y,, the 
local subcooling is expressed as R, . q,. Then, the sur- 
face averaged subcooling AT,,(r) for the fractional 
area f(v) is given as 

AT,(r) = ;. 
1 

R,q, 
if' 
'-~ dr. 
?r 

(101 

Since the thermal resistance at this surface is R(r). the 
subcooling is also expressed as 

(21) 

Comparing equation (21) with equation (20). we find 
that equation (19) should hold if y, is constant. In the 
case of E., --t 0, the surface temperature is almost the 
same as the steam temperature T> since the steam-side 
heat transfer coefficient is very high compared with 
the conductance of the condenser material. Therefore. 
the deviation of temperature gradient in the condenser 

material from the mean value can be disregarded, so 
that the local heat flux q, is considered to be constant. 

3.2. Busic pcuwn~ters and tmtnericul method 

Taking r,,,,, and h, as characteristic scales for length 
and thermal conductance, I-espectively, a dimen- 
sionless drop radius 5 and a dimensionless thermal 
resistance R* are defined by 

< = rir,,,,, R* = R-h,. (22) 

Then, the fundamental equations (13) and (14) are 
made dimensionless as follows : 

where Bi, is a Biot number defined by the thermal 
conductivity of the condenser material J.,, interfacial 
heat transfer coefficient h,, and departing drop radius 

I’,,,,, 

The droplet resistance in equation (I 5) is transformed 
to the non-dimensional form 

It is found from equations (23) and (25) that the 
thermal resistance in the dropwise condensation is 
determined by the Biot number Bi, in addition to the 
basic parameters 5, and t,,, shown by the theory given 
in ref. [lo]. When the condensing substance, system 
pressure, mean surface subcooling. and departing 
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drop size are given, the basic parameters 5, and tcri 
are determined. Thus, the effect of surface thermal 
conductivity on the heat transfer coefficient depends 
on the value of Bi,. 

The differential equation (I 3) is solved numerically 
by the Runge-Kutta method from the drop size 5, 
until the effective maximum size &,,,, at a certain 
instant of the transient dropwise condensation. Here, 
the instantaneous drop size distribution in equation 
(9) is assumed to be applicable for all of the drop size 
region 

f(5, r) = (ufnl,,)““‘. (26) 

The procedure is repeated by the proper time 
increment and the time-averaged thermal resistance is 
obtained using the trapezoidal rule. 

In the drop size region 6 < <,, the interfacial resis- 
tance is more dominant than the conduction resis- 
tance through the droplet. The effect of mean free path 
L on the droplet thermal resistance Rd was pointed 
out in ref. [ 171. Noticing that equation (15) assumes 
uniform hi over the drop surface, it proves to be valid 
in the case of L/r cc 1. However, in the present case in 
which the surface is completely covered by drops, the 
thermal resistance of the droplets for which L/r >> 1 
increases to twice the value of equation (15) [ 17,181. 
The modification factor [3 + log,, (L/r)]/4 was intro- 
duced [12] to change the droplet conductance for the 
drop size region 0.1 < (L/r) < 10. Then, the droplet 
resistance R.j’ of equation (15) is modified by the mul- 
tiplier from two to one. From this modification, the 
thermal resistance R$ in the region &J < 5, becomes 
almost uniform at unity except near &. Therefore, 
the initial and boundary conditions in the present 
calculation are determined as follows : 

R*=l at z=O and R*=l at 5~5,. 

(27) 

The value of rcri is fixed as 2.0 x 10-j throughout the 
calculation since r,, does not change markedly. 

4. RESULTS AND DISCUSSION 

Numerical analysis is first carried out for the case 
of the transient dropwise condensation of steam at 
atmospheric pressure under the departing drop size 

r,,, = 1 .O mm. In this case, 5, takes a value of 
3.64 x 10-4. Figure 3 presents the calculated variation 

10-5 10~' 10-S 10-2 10-l 1 

Nondimensional Time = 

FIG. 3. Variation of instantaneous thermal resistance with 
time. 

Relation between time-averaged thermal resistance 
and Biot number. 

with time r of the instantaneous thermal resistances 
li* for the various values of Bi,. The instantaneous 
resistance increases with time due to the growth of the 
droplet even in the case of Bi, = 0. The increasing rate 
of thermal resistance becomes significant with Bi,. We 
note from this figure that the contribution of large 
drops having radii near the departing drops is marked 
and that an increase of Bi, raises the constriction 
resistance in the regions of smaller drops. 

Figure 4 shows the time averaged thermal resistance 
R* as a function of Bi,. Here, we chose the values 
of 5, = 1.29x lo-‘, 4.71 x lo-‘, 1.80x 10m3, and 
3.64 x lo-“, which correspond to the steam pressures 
of 1.0, 3.56, 12.3, and 101.3 kPa, respectively. For 
small Bi,, the time averaged thermal resistance is con- 
stant at the lower limit obtained from equation (18) 
for & + cc as 

R* = 0.629{,“.3. (28) 

The thermal resistance increases with Bi, and gradu- 
ally approaches the upper limit for 1, --t 0, which is 
expressed from equation (19) as 

R* = 0.1775;“.82. (29) 

It is also found that the increasing rate of resistance 
is marked for the small values of 5,. This is because 
the drop size region effective for the constriction resis- 
tance extends to the smaller drops due to relatively 
large droplet conduction resistance compared with 
the interfacial thermal resistance of higher pressure 
steam. 

The heat transfer coefficients are presented in Fig. 
5 for two steam pressures of 1.0 and 101.3 kPa with a 
practical purpose of illustrating how the heat transfer 
coefficient decreases with the decrease of surface ther- 
mal conductivity. The theoretical predictions from the 
present constriction resistance theory are shown by 
the solid and broken lines for the radii of departing 
drops rmax = 1.0 and 1.5 mm, respectively. For a sur- 
face material with a high thermal conductivity such as 
copper (A, N 380 W rn- ’ K- ‘), there is no significant 
effect of the constriction resistance at the steam press- 
ure of 1.0 kPa, but the heat transfer coefficients at 
101.3 kPa decrease to about 80% of the theoretical 
results for a surface with infinite thermal conductivity. 
Further, for the case of a glass surface with very low 
thermal conductivity (1, - 1.0 W m- ’ K- ‘), the 
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1OOOt . . . . . . ..I . . . . . . ..I . . ..lly 
: Experimental Data 

. o Hotomiyo-Tanaka I1 91 

c . A Tanner et al. 121 

. 0 Wilkins-Bromley 141 

. p Honnemonn-Mikic 161 

. Aksan-Rose 151 

Po= 101.3 kPo : 

Present Theory 

- r,=l.Omm 
------ r,, = 1.5 mm 

HannemaM-Mikic I71 : 

r,. = 1.25.mm : 

5 I . . ..a . ..I . . . ..- 
1 10 100 1000 

Surface Thermal Conductivity A, , W/(mK) 

FIG. 5. Variation of heat transfer coefficient for dropwise 
condensation of steam with surface thermal conductivity. 

effects of constriction resistance are considerably large 

such that the heat transfer coefficients decrease to one- 
fifteenth at 101.3 kPa and one-third at 1.0 kPa. Figure 
5 also shows the representative heat transfer data by 

some researchers for comparison with the present 
results. The theoretical predictions for the copper sur- 

face at 1.0 kPa agree very well with the reliable data 
of ref. [ 191 while theoretical lines for 101.3 kPa deviate 
to some extent to the higher side. The heat transfer 
coefficients for the atmospheric pressure steam depend 
on the nucleation site density since the size of charac- 
teristic radius [, decreases and approaches the critical 

radius &.,, with increasing pressure. In the present 
analysis, the nucleation site density is assumed to be 
infinitely large so that the thermal resistance R* in the 
drop size range smaller than [, is taken as a constant 

at unity. Then the calculated results are considered to 
give the upper limits for the heat transfer coefficients 
of dropwise condensation. 

Hannemann and Mikic [7] presented a theoretical 
correlation for steam at atmospheric pressure, which 

is shown by the dotted curve in Fig. 5. Since their 
correlation was made using a value of 227 kW m ’ 
Km ’ as an asymptotic heat transfer coefficient for a 

surface with infinite thermal conductivity, it agrees 
well with the experimental data denoted by the open 
symbols for the surfaces with thermal conductivity 
higher than around 50 W mm ’ Km ‘. With decreasing 
thermal conductivity, however, the heat transfer 
coefficient decreases monotonously below the lower 
limit estimated by the present theory. 

Although we cannot make a close comparison with 
the experimental data due to the lack of information 
about the departing drop size, it seems from Fig. 5 
that the present theory is capable of describing the 
constriction resistance in dropwise condensation. 
Further experimental studies in the reduced pressure 
range are anticipated to verify the present constriction 

resistance theory since the heat transfer coefficient is 
not affected by the difference in the population of 
microscopic droplets [ 191. 

5. CONCLUSION 

The present study derived a fundamental differ- 
ential equation describing the constriction resistance 

caused by the nonuniformity of the surface heat flux 
due to the finite thermal conductivity of the condenser 
material. The conclusions are as follows : 

(1) Heat transfer coefficient of dropwise con- 
densation decreases with decreasing surface thermal 
conductivity due to increasing constriction resistance. 

(2) Constriction resistance can be determined by 
the Biot number Bi, and the characteristic non-dimen- 
sional drop radius < ,. Bi, is defined by the interfacial 
heat transfer coefficient, the departing drop radius 
and the surface thermal conductivity, and 5, is a func- 
tion of pressure. 

(3) Constriction resistance increases with Bi, and 
its increasing rate is significant for the small value of 
< ,. i.e. for the high pressure condition. Also, at the two 
limits of Bi,, the heat transfer coefficient approaches a 
constant value. 
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APPENDIX 

In order to obtain an analytical expression for the con- 
densing surface temperature of the adiabatic cylinder system 
in Fig. 2, the steady heat conduction equation is solved for 
the following boundary conditions : 

0 g = 0 at r = 0 and 
ar 

r a 

dT 

0 

Qd - =_..___ 
8Z &‘fd 

at z i= 0 for r < r, 

ST 

0 

Qa - =__._ 
i?Z &‘% 

at .z = 0 for r, C r < r, 

T= To at z=& (Al) 

Here, the surface heat flow rates, Qd through the central large 
drop and Qa through the surrounding area, are expressed as 

where (T& and (T,), are the averaged surface temperatures 
for respective parts. From the above boundary conditions, 
we obtain the following solution for the temperature dis- 
tribution at the condensing surface (z = 0) : 

(A4) 

where Jo and J, are the Bessel functions of zeroth and first 
order, respectively, and cli the zeros of Ji (xi). z is the surlace- 
averaged tem~ratu~ and is given by 

Qd+Qa 
Tc = To + &(A, +A8) ” 

From Mikic’s definition in equation (S), using the weighted 
mean surface temperature T,, the constriction resistance is 
expressed as 

%= W) 

y= f J:otanh i= , a: J&i) 
(A7) 

where A = A,+A,. By utilizing Hannemann’s approxi- 
mation [ZO] for the infinite series 

Y=&~(l-~~tanh(4$] (A8) 

and considering rd/ra <c I and tanh (4&r,) -+ 1, the con- 
striction resistance in this model becomes 

By letting rd-+r, R,-+R, &+ Rgdr, and utilizing the 
relation A,/.4 = (i/~(~~/~r) dr, equation (14) is obtained. 

UNE ETUDE THEORIQUE DE LA RESISTANCE DE CONSTRICTION DANS LA 
CONDENSATION EN GOUTTES 

R&u&--On Btudie th~oriquement l’effet de la conductivite the~ique du materiau du condenseur sur le 
transfert tbermique pendant la condensation en gouttes. Prenant en compte la contribution de la resistance 
de gouttelette, une equation aux derides partielles fondamentale est donnee pour d&ire la resistance de 
constriction cat&e par ~h~t~rog~n~it~ du flux thermique surfacique. On trouve & partie de l%quation 
fond~entale adimentionnelle que la resistance de constriction peut &tre determin&e par un nombre de 
Biot defini par le cefficient de transfert thermique interfacial, le rayon de goutte a la separation et la 
conduction thermique de la surface, en plus de quelques parametres caracteristiques. En appliquant ce 
qu’on appelle la region d’equilibre des petites gouttes, cette equation est resolue n~~~quement et on 

pmsente les effets de ces parametres sur le coefficient de transfert thermique. 



T. TSIJKI:TA and H. TANAKA 

THEORETISCHE UNTERSUCHUNG DES MASSGEBLICHEN WIDERSTANDS BE1 DER 
TROPFENKONDENSATION 

Zusammenfassung-- Der EinflulJ der Warmeleitfahigkeit des Wandmaterials auf den Wlrmeiibergang hci 
der Tropfenkondensation wird theoretisch untersucht. Dabei wird eine grundlegende Differentialgleichung 
ahgeleitet. in welcher der Beitrag des Triipfchcnwiderstandes der jeweiligen GriiBenklasse zum 
Warmeiibergangswiderstand bci der transienten Tropfenkondcnsation beriicksichtigt wird. Die Differ- 
cntialgleichung beschreibt den maRgeblichen Widerstand. der durch die ungleichfiirmige Verteilung der 
Wirmestromdichte an der Oherfliche verursacht wird. Anhand der in dimensionslose Form gebrachtcn 
Gleichung erkennt man, da13 der mangebliche Widerstand mit Hilfc eincr Biot-Zahl ermittelt werden 
kann. Diese wird mit dem Wnrmeiibergangskoeffizienten an der Phasengrenze, dem Abreil3durchmesser 
der Triipfchen. der W5rmeleitf%higkeit, des Oberfl%chenmatcrials und einigen charakteristischen Para- 
metern gebildet. Urn den EinfluB dieser Gr6Den auf den W$rmeiibcrgangskoeffizienten darrustellen. wird 
diese Gleichung numerisch unter Verwendung des sogenannten Gleichgewichtsgebicts kleiner Tropfen 

als Tropfengr~Rcnvertcilung gcliist. 

TEOPETMYECKOE MCCJIEAOBAHME COHPOTMBJIEHHR CTIITMBAHMIO HPM 
KAIIEJIbHOa KOHAEHCAqHII 

&oTam-TeopeTaqecKH mxnenyexr BJIWmnie TcnJlOnpOBO~HOCTIl MaTepaana KOHneHCaTOpa Ha 

TenJIOnepeHOC IIpH KaIIeJtbHOi KOHAeHCiUWi. c yVeTOM BKJlana COnpOTEiBJteHHFl KaneJIb AJIK KOHKpeT- 

Hero mana30Ha ex pa3Mepoe B TepMmecKoe conpoTwsnemse npa HecTauaoHapoHol KanenbHoii KOH- 

.neHcaqmi BbIBOllHTCIl Ati+#EpeHLWJlbHOe ypamiemie, omicbmammee ConpoTuBJIeHAe CTPrBBaHAH). 

BbI3BaNHOe HeO~HOpOAWJCTbH, TCJIJIOBOrO IlOTOKa Ha nOBepXHOCTEi.ki3 3TOrO ypaBHeH&iR,3anEiCaHHOrO 
B 6e3pa3MepHOM Bane, HaiiqeHO, ‘iT0 COnpOTEiBJIeHEie CTRrHBaHBK) MOXCeT 6bITb paCCWTaH0 C 

noMoIqbI0 qlicna 6~0, KOTOPO~ 0npenenneTcr Ko3+&iuHetIToM TennonepeHoca Ha rpaawue pasnena, 

paAHyCOM OTpbIBatomeiiCS KanJIIf, K03I#SiIJ&ieHTOM T‘?nJlOnPOBOAHOCTA nOBepXHOCTH A HeKOTOpbIMIi 

XapaKTepHbIME, napaMeTpaMH.&I$, yCTaHOBJIeHHSI B,WIlHHR yKa3aHHbIX BeJIHWiH Ha K03+,WUHeHT Ten- 

nonepeHoca naHHoe ypaeHeHne pemaeTcn qacneHH0 C Acnonb309aHUeM paeHosecHor0 pacnpeneneHua 


