Int. J. Hear Mass Transfer.
Printed in Great Britain

Vol. 34, No. 11, pp. 2779-2786, 1991

0017-9310/91 $3.00+0.00
& 1991 Pergamon Press pic

A theoretical study on the constriction resistance
in dropwise condensation

TAKAHARU TSURUTA

Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui-cho,
Tobata-ku, Kitakyushu, Japan

and

HIROAKI TANAKAW
Department of Mechanical Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

{Received 10 August 1990 and in final form 25 December 1950}

Abstract— The effect of the thermal conductivity of the condenser material on dropwise condensation heat
transfer is studied theoretically. By taking account of the coniribution of the droplet resistance in the
individual drop size class to the thermal resistance in transient dropwise condensation, a fundamental
differential equation describing the constriction resistance caused by the inhomogeneity of surface heat
flux is derived. It is found from the non-dimensionalized fundamental equation that the constriction
resistance can be determined by a Biot number defined by the interfacial heat transfer coefficient, the
departing drop radius and the surface thermal conductivity, in addition to a few characteristic parameters.
By applying the so-called equilibrium region of small drops as the drop size distribution, this equation is
solved numerically so that the effects of these parameters on the heat transfer coefficient are presented.

1. INTRODUCTION

ALTHOUGH considerable progress has been made in
the study on the steam-side mechanism of dropwise
condensation, the effects of the thermal properties of
the condenser material on the heat transfer rate are
less well understood. In dropwise condensation, a very
wide range of drop size exists on the condensing
surface, extending from the primary drop to the larg-
est departing drop. The condensing surface covered
by the smaller active drops vields an extremely high
heat transfer rate, while the surface under the larger
drops serves as an insulated surface. The nonuni-
formity of surface heat flux leads to the constric-
tion of heat flow lines near the condensing surface and
increases the thermal resistance in the same manner
as a contact resistance between the solids. The
additional thermal resistance is termed as a con-
striction resistance and its fundamental explanation
was first given by Mikic [1]. The constriction resis-
tance comes up as an important problem for a hydro-
phobic polymer coating with low thermal conductivity
as well as for a practical condenser material.
Experimental evidence for the constriction resis-
tance has been presented by several investigators. Tan-
ner et al. [2] compared the heat transfer coefficients
in the dropwise condensation of steam at atmospheric
pressure using copper and stainless steel surfaces.
Griffith and Lee [3] conducted the experiments with
the horizontal downward surfaces made of copper,
zinc, and stainless steel. Also, Wilkins and Bromley
[4] measured the heat transfer coefficients on five kinds
of vertical pipes. The above investigators pointed out

that the experimental heat transfer coefficient
decreased with the surface thermal conductivity. On
the other hand, Aksan and Rose [5] measured the heat
transfer coefficients on copper and mild steel surfaces
very carefully, and they obtained an opposing result
that there was no significant difference between them.
Most of these workers obtained the condensing sur-
face temperature by the extrapolation method using
the temperature profile in the condenser block. Since
the uncertainty in inferring the surface temperature
from the extrapolation increases with decreasing sur-
face thermal conductivity, many arguments have been
made concerning the uncertainty of the experimental
heat transfer coefficient together with some dis-
cussions on the effect of surface chemistry. Following
them, Hannemann and Mikic [6] conducted the pre-
cise measurement of the surface temperature using
a thin-film resistance thermometer deposited on the
stainless steel surface, and they obtained the lower
heat transfer coefficient than that for the copper con-
densing surface. At the same time, Hannemann and
Mikic [7] made a numerical analysis which indicated
the dependence of the heat transfer coefficient on the
thermal conductivity of the condenser material. How-
ever, Stylianou and Rose [8] gave once more an oppos-
ing experimental result using copper, bronze, and ptfe
surfaces. Therefore, it is impossible to conclude from
the above studies whether or not the constriction
resistance plays an important role in dropwise con-
densation heat transfer.

This paper puts forward the constriction resistance
theory on the basis of numerical work by Hannemann
and Mikic [7]. A fundamental differential equation
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A area
Bi, Biot number, /;* 1/ Ac

f(r) fraction of the area covered by drops with
radii smaller than r

h heat transfer coefficient

I, latent heat of vaporization

h, interfacial heat transfer coefficient

L mean free path
N density of drop size distribution

g mean heat flux
4, local heat flux
R(r) thermal resistance between the vapor and

the condenser surface covered by
drops with radii smaller than r
R. constriction resistance

NOMENCLATURE

Feri thermodynamic critical drop radius
Fmax  departing drop radius
F instantaneous effective maximum drop

radius
ry characteristic drop radius defined by
equation (16)
T, local condensing surface temperature
7. mean surface temperature
T., weighted mean surface temperature
defined by equation (5) !
T, saturation temperature
{ time
ty specific volume of vapor.

Greek symbols

R, dr constriction resistance caused by drops % condensation coefficient
with radii between r and r+dr A thermal conductivity of condenser
Ry thermal resistance of a single drop material
R, gas constant A thermal conductivity of liquid
Ry thermal resistance in the absence of ¢ dimensionless drop radius, #/r..,
constriction effect Een dimensionless critical drop radius,
R instantaneous thermal resistance in Fori P
transient dropwise condensation &, dimensionless characteristic drop radius,
R time-averaged thermal resistance 1 s
R* dimensionless thermal resistance, R - A; T dimensionless time, 77,
r drop radius Ty sweeping period.
describing the constriction resistance is derived by I | .
formulating the contribution of the drop resistance in I.= 4 ﬁ T.d4 )
the individual drop size class to the total thermal
resistance. The characteristics of the fundamental ol j 1 A (@)
equation are fully analyzed and the effects of each Ry ALR ‘

parameter are shown in a more generalized form than
that by the numerical study.

2. THEORETICAL BACKGROUND

Mikic [1] pointed out the effect of constriction resis-
tance as follows. The mean heat flux ¢ through the
condensing surface A4 is expressed with the saturation
temperature 7,, the local condensing surface tem-
perature T,, and the local vapor-to-surface thermal
resistance R, as

! T7,—T,
=—| -P-2fdA. 1
9= L R 0]
In an extreme case where the thermal conductivity of
the condenser material is infinitely high, T is uniform

and equal to the mean surface temperature T.. Then,

q is written as
T,—T.
—s < (2)
7R,

where

For a practical condenser material having a finite
thermal conductivity, T, is not uniform but variable
depending on the local heat flux. In this case, by
introducing a weighted mean surface temperature

Ry | T.
T == = dA 5
cm A J; R/ ( )
we can express the mean heat flux as
T,—-T.
[ P (6)
R

Usually the heat transfer coeffficient & for dropwisc
condensation is defined by

q

h= s
T.-T.

(N
Therefore, the thermal resistance of dropwise con-
densation is expressed as

T,

( 1) T,— T  Tow—T.
Rl = |=-" "4 T
h q q

= Ry,+R.. (%)
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From the above equation, we can find that the thermal
resistance in dropwise condensation is expressed as a
sum of two resistances in series, namely, the surface-
averaged thermal resistance R, through the droplets
and the constriction resistance R, caused by the non-
uniformity of the surface temperature.

A thorough understanding of the constriction
resistance phenomena requires knowledge of the
drop size distribution on the condensing surface. A
comprehensive theory for the drop size distribution
has been developed [9, 10] from the viewpoint that the
so-called steady dropwise condensation is, in reality,
composed of transient dropwise condensation occur-
ring repeatedly on the tracks left by departing drops.
From the theory, we can estimate the instantaneous
drop size distribution by the following equation for
the case that the nucleation-site density is infinitely
high :

NG 1) = ?(’ ) | ©)

max \/'max

where N(r,1) is the density of drop size distribution
defined so that there are N(r, f) dr drops per unit con-
denser area having radii in the interval [r, 7+ dr]. The
drop radius 7,,, is termed as an instantaneous effective
maximum drop size, which grows with time ¢ from the
start of transient condensation and it can be connected
with the departing drop radius r,,,, by

5 (2)
Fmax To

where 1, is the mean sweeping period of drop depar-
ture. Equation (9) is applicable to the equilibrium
region of small drops [9] which develops in the very
wide range of drop sizes: 2D < r < 0.27,,,, where
D is the spacing between the nucleation sites. This
theoretical expression has been confirmed to be in
good agreement with the experimental drop size dis-
tribution [11]. The drop size distribution in the steady
dropwise condensation is obtained by averaging the
instantaneous distribution density over the time inter-
val 7,4 [12].

(10)

3. CONSTRICTION RESISTANCE THEORY

3.1. Derivation of basic equation

In analyzing the effects of spatial and time-wise
nonuniformity of the surface heat flux due to the time-
dependent drop size distribution, it is considered that
the transient dropwise condensation starts simul-
taneously at time ¢ = 0 throughout a considerably
large, initially bare surface. Here, we assume that the
time response of the surface temperature to the vari-
ation of drop size distribution is sufficiently rapid such
that the thermal capacity effect can be neglected. From
the assumption, the instantaneous thermal resistance
in the transient dropwise condensation can be deter-
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mined using the transient drop size distribution and
the quasi-steady heat conduction equation. The ther-
mal resistance in the steady dropwise condensation
can be obtained by taking a time-average over a
sweeping cycle of falling drops. The assumption is
based on the facts that the big drops yielding the large
constriction do not change their locations so rapidly
and that the temperature variation by the small active
drops is much smaller than that by the big drops.

At a certain time ¢ in the transient dropwise con-
densation, let R(r, f) denote the vapor-to-surface ther-
mal resistance in the fractional surface area f(r, 1)
covered by the drops having radii smaller than r, as
shown in Fig. 1. If the thermal resistance is free of
constriction, the droplet resistance R, per unit area
having radii in the interval [r,r+dr] is accompanied
with R(r, f) in parallel

S(r+dr,)  f(r?)
R

fr+dr,)—f(r,0)
T R(, 1) Ry

n
P
where R, is the parallel resistance. In the practical
condenser material, constriction resistance R dr
caused by the drops of radii r to r+dr takes part in
the thermal resistance in series as equation (8)

R(r+dr,1) = R,+ R, dr. (12)

By eliminating R, from equations (11) and (12), and
by ignoring terms of second and higher orders of
dr, we obtain the following fundamental differential
equation:

R _10f
or [ or

Léf R? ,
TR R;. (13)
Here, the additional constriction resistance R.dr is
evaluated by the adiabatic cylinder model as shown
in Fig. 2. Since the fractional area covered by drops
with radii in [r,r+dr] is small in comparison with
f(r,0), it is reasonable to consider that such large
drops are arranged with enough spacing between
them. In this model, a large drop with a thermal
resistance R, is in the center of the cylinder, and is
surrounded by drops with radii smaller than r form-
ing thermal resistance R(r, ). For simplicity, drops
are assumed to be hemispherical. From the calculation

1.0

f(r)

0.8F

0.6

0.4

) = (L J

Fraction of the area covered by drops
with radii smaller than r,

ozt Tmax=1.0mm 7
[} BT BN B
0.001 0.0t 0.1 1.0

Drop radius r, mm

FiG. 1. Typical instantaneous drop size distribution in the
transient dropwise condensation.
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Thermal conductivity |7
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L hN T=To
z
F16. 2. Adiabatic cylinder model.

of the surface temperature distribution, R.dr is
obtained as

87r : RY - 8r
?n/t Ry 3/ Ry

The derivation is given in the Appendix.

The thermal resistance through a hemispherical
droplet R, is expressed from the substantial drop
growth rate by Umur and Griffith [13], which is
approximated by [14]

l 3. 5//r|
Lrl/r) ln(] 3. Sr/r,)

"1af
/ud

(14)

R.dr=

Ry = (15)

2h(1—
Here, r.; is the thermodynamic critical drop radius
[15], and r, the following characteristic drop sizc at
which the interfacial thermal resistance and the con-
duction resistance through the drop approximately
balance [10]:

(16)

where 4, is the thermal conductivity of the liquid. The
interfacial heat transfer coefficient 4; is given by [16]

P 2 1 hfg
' 207892 /(2aR,T,) v T

where R, is the gas constant, v, the specific volume of
the vapor, A, the latent heat of vaporization and x the
condensation coeflicient with a value of 0.4 for low
pressure steam [12].

Equation (13) is a Riccati differential equation, but
it is difficult to obtain an analytical solution except
for the two limits of i, — o0 and A, — 0. In the former
case (4.~ o0), i.e. R, = 0, equation (13) has the fol-

lowing solution:
af
Jk}; PR

fon
R(r, 1)
The solution is also obtained from the physical mean-
ing that the heat transfer coefficient in the absence of
constriction resistance is given as a total conductance

(7"

(18)
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for all drops. In the latter case (4. — 0), equation (13)
has the solution
of

F(h DR 1) = JRd . (19)
Here, let us consider the physical meaning of this
equation. If we denote the local heat flux as ¢,, the
local subcooling is expressed as R,-q,. Then, the sur-
face averaged subcooling AT, (r) for the fractional
area f(r) is given as

1
AT, (r) =~ Jqu/ Fé dr. (20)
Since the thermal resistance at this surface is R(r), the
subcooling is also expressed as

af
Ta(r) = Jq, o dr. 2h

Comparing equation {21) with equation (20), we find
that equation (19) should hold if ¢, is constant. In the
case of A, — 0, the surlace temperature is almost the
same as the steam temperature 7 since the steam-side
heat transfer coefficient is very high compared with
the conductance of the condenser material. Therefore,
the deviation of temperature gradient in the condenser
material from the mean value can be disregarded, so
that the local heat flux ¢, is considered to be constant.

3.2. Basic parameters and numerical method

Taking r,... and A, as characteristic scales for length
and thermal conductance, respectively, a dimen-
sionless drop radius ¢ and a dimensionless thermal
resistance R* are defined by

R*=R-h, 22)

£ o gl
& = T maxs

Then, the fundamental equations (13) and (14) are
made dimensionless as follows:
éR* 1 (?f R*+8/ 3n) Bi.

NET S AT ) *4(“ l L" {23}
aé fo¢ +8/(3n) Bl &
where Bi. is a Biot number defined by the thermal
conductivity of the condenser material 1., interfacial
heat transfer coefficient /;, and departing drop radius

'HHIX

4)

The droplet resistance in equation (15) is transformed
to the non-dimensional form
1 3. 55@1

2(1—E/8) In(1+3.58/E )

It is found from equations (23) and (25) that the
thermal resistance in the dropwise condensation is
determined by the Biot number Bi, in addition to the
basic parameters ¢ and ¢_; shown by the theory given
in ref. [10]. When the condensing substance, system
pressure, mean surface subcooling, and departing

R¥= (25)
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drop size are given, the basic parameters £, and &
are determined. Thus, the effect of surface thermal
conductivity on the heat transfer coefficient depends
on the value of Bi_.

The differential equation (13) is solved numerically
by the Runge-Kutta method from the drop size &,
until the effective maximum size £,,, at a certain
instant of the transient dropwise condensation. Here,
the instantaneous drop size distribution in equation
(9) is assumed to be applicable for all of the drop size
region

FE 1) = (Efma) P

The procedure is repeated by the proper time
increment and the time-averaged thermal resistance is
obtained using the trapezoidal rule.

In the drop size region ¢ < &, the interfacial resis-
tance is more dominant than the conduction resis-
tance through the droplet. The effect of mean free path
L on the droplet thermal resistance Ry was pointed
out in ref. [17]. Noticing that equation (15) assumes
uniform #; over the drop surface, it proves to be valid
in the case of L/r « 1. However, in the present case in
which the surface is completely covered by drops, the
thermal resistance of the droplets for which L/r » 1
increases to twice the value of equation (15) [17, 18].
The modification factor [3+1og,, (L/r)]/4 was intro-
duced [12] to change the droplet conductance for the
drop size region 0.1 < (L/r) < 10. Then, the droplet
resistance R} of equation (15) is modified by the mul-
tiplier from two to one. From this modification, the
thermal resistance R¥ in the region & < &, becomes
almost uniform at unity except near £;. Therefore,
the initial and boundary conditions in the present
calculation are determined as follows :

R*=1

(26)

at t=0 and R*=1 at £<¢,.

@7

The value of £ is fixed as 2.0 x 10~ throughout the
calculation since r.; does not change markedly.

4. RESULTS AND DISCUSSION

Numerical analysis is first carried out for the case
of the transient dropwise condensation of steam at
atmospheric pressure under the departing drop size
Fmax = 1.0 mm. In this case, &, takes a value of
3.64 x 10~ *. Figure 3 presents the calculated variation

107 ey ™ ~ o

& = 3.64x107*
fori = 2.0x107°

2
v

Bic = 10* E

103
107

Instantaneous Thermal
Resistance R* (1)
3,
oy

1 parerr | T o aaal,
1078 107* 1073 1072 107! 1
Nondimensional Time 71
FiG. 3. Variation of instantaneous thermal resistance with
time.
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FIG. 4. Relation between time-averaged thermal resistance
and Biot number.

with time 7 of the instantaneous thermal resistances
R* for the various values of Bi.. The instantaneous
resistance increases with time due to the growth of the
droplet even in the case of Bi, = 0. The increasing rate
of thermal resistance becomes significant with Bi,. We
note from this figure that the contribution of large
drops having radii near the departing drops is marked
and that an increase of Bi, raises the constriction
resistance in the regions of smaller drops.

Figure 4 shows the time averaged thermal resistance
R* as a function of Bi,. Here, we chose the values
of &, =129%10"2% 471x107% 1.80x107% and
3.64 x 10~ *, which correspond to the steam pressures
of 1.0, 3.56, 12.3, and 101.3 kPa, respectively. For
small Bi,, the time averaged thermal resistance is con-
stant at the lower limit obtained from equation (18)
for 4, —> oo as

R* = 0.629¢, . (28)

The thermal resistance increases with Bi, and gradu-
ally approaches the upper limit for A, — 0, which is
expressed from equation (19) as

R* = 0.177¢7 %82, (29

It is also found that the increasing rate of resistance
is marked for the small values of &,. This is because
the drop size region effective for the constriction resis-
tance extends to the smaller drops due to relatively
large droplet conduction resistance compared with
the interfacial thermal resistance of higher pressure
steam.

The heat transfer coefficients are presented in Fig.
5 for two steam pressures of 1.0 and 101.3 kPa with a
practical purpose of illustrating how the heat transfer
coefficient decreases with the decrease of surface ther-
mal conductivity. The theoretical predictions from the
present constriction resistance theory are shown by
the solid and broken lines for the radii of departing
drops 7., = 1.0 and 1.5 mm, respectively. For a sur-
face material with a high thermal conductivity such as
copper (4. ~ 380 Wm~' K~"), there is no significant
effect of the constriction resistance at the steam press-
ure of 1.0 kPa, but the heat transfer coefficients at
101.3 kPa decrease to about 80% of the theoretical
results for a surface with infinite thermal conductivity.
Further, for the case of a glass surface with very low
thermal conductivity (4, ~ 1.0 W m~' K~'), the
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F1G. 5. Variation of heat transfer coetlicient for dropwise
condensation of steam with surface thermal conductivity.

effects of constriction resistance are considerably large
such that the heat transfer coefficients decrease to one-
fifteenth at 101.3 kPa and one-third at 1.0 kPa. Figure
5 also shows the representative heat transfer data by
some researchers for comparison with the present
results. The theoretical predictions for the copper sur-
face at 1.0 kPa agree very well with the reliable data
of ref. [19] while theoretical lines for 101.3 kPa deviate
to some extent to the higher side. The heat transfer
coeflicients for the atmospheric pressure steam depend
on the nucleation site density since the size of charac-
teristic radius £, decreases and approaches the critical
radius &.; with increasing pressure. In the present
analysis, the nucleation site density is assumed to be
infinitely large so that the thermal resistance R* in the
drop size range smaller than ¢, is taken as a constant
at unity. Then the calculated results are considered to
give the upper limits for the heat transfer coefficients
of dropwise condensation.

Hannemann and Mikic [7] presented a theoretical
correlation for steam at atmospheric pressure, which
is shown by the dotted curve in Fig. 5. Since their
correlation was made using a value of 227 kW m *
K~ as an asymptotic heat transfer coefficient for a
surface with infinite thermal conductivity, it agrees
well with the experimental data denoted by the open
symbols for the surfaces with thermal conductivity
higher than around 50 W m~' K~'. With decreasing
thermal conductivity, however, the heat transfer
coefficient decreases monotonously below the lower
limit estimated by the present theory.

Although we cannot make a close comparison with
the experimental data due to the lack of information
about the departing drop size, it seems from Fig. 5
that the present theory is capable of describing the
constriction resistance in dropwise condensation.
Further experimental studies in the reduced pressure
range are anticipated to verify the present constriction

T. TsuruTa and H. TaNaka

resistance theory since the heat transfer coefficient is
not affected by the difference in the population of
microscopic droplets [19].

5. CONCLUSION

The present study derived a fundamental differ-
ential equation describing the constriction resistance
caused by the nonuniformity of the surface heat flux
due to the finite thermal conductivity of the condenser
material. The conclusions are as follows:

(1) Heat transfer coeflicient of dropwise con-
densation decreases with decreasing surface thermal
conductivity due to increasing constriction resistance.

(2) Constriction resistance can be determined by
the Biot number Bi, and the characteristic non-dimen-
sional drop radius &,. Bi, is defined by the interfacial
heat transfer coefficient, the departing drop radius
and the surface thermal conductivity, and &, is a func-
tion of pressure.

(3) Constriction resistance increases with Bi. and
its increasing rate is significant for the small value of
&, 1.e. for the high pressure condition. Also, at the two
limits of Bi,, the heat transfer coefficient approaches a
constant value.
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APPENDIX

In order to obtain an analytical expression for the con-
densing surface temperature of the adiabatic cylinder system
in Fig. 2, the steady heat conduction equation is solved for
the following boundary conditions:

(ET) 0 at r=0 and 7,
ar

ar O
Bz T A,

o\ 0
(5?) a4

T=T, at z=24.

at z=0 for r<rg

z=0 for ry<r<ry

(AD
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Here, the surface heat flow rates, Q, through the central large
drop and @, through the surrounding area, are expressed as

Ts - (:rc)d A
d

0 =—p (A2)
_T,—(T),
0= === 4 (A3)

where (7,)q and (7,), are the averaged surface temperatures
for respective parts. From the above boundary conditions,
we obtain the following solution for the temperature dis-
tribution at the condensing surface (z = 0):

o 2 fQs QG
Tc”Tc+ 'a-c (B;—_)¢(r)

2 Jy(0relr,s 5
90 =% a§f‘-,—§-;’)) J ( )m( r)
(Ad)

where J, and J, are the Bessel functions of zeroth and first
order, respectively, and o, the zeros of J {(«,). T, is the surface-
averaged temperature and is given by

Qd + Qa
Ac (Ad + Aa)
From Mikic’s definition in equation (8), using the weighted

mean surface temperature T, the constriction resistance is
expressed as

T.=To+ é. (AS5)
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where 4 = 44+ A,. By utilizing Hannemann’s approxi-
mation [20] for the infinite series
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and considering ry/r, « 1 and tanh(4é/r,) — 1, the con-
striction resistance in this model becomes

8ry RY 8ry VA,
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By letting ry—r, R,—~ R, R.— R.dr, and utilizing the
relation 4;/4 = (1) f)}(@f/0r) dr, equation (14) is obtained.

(A8)

(A9)

UNE ETUDE THEORIQUE DE LA RESISTANCE DE CONSTRICTION DANS LA
CONDENSATION EN GOUTTES

Résumé—On étudie théoriquement Peffet de la conductivité thermique du matériau du condenseur sur le
transfert thermique pendant la condensation en gouttes. Prenant en compte la contribution de la résistance
de gouttelette, une équation aux dérivées partielles fondamentale est donnée pour décrire la résistance de
constriction causée par 'hétérogénéité du flux thermique surfacique. On trouve a partie de 'équation
fondamentale adimentionnelle que la résistance de constriction peut étre déterminée par un nombre de
Biot défini par le cefficient de transfert thermique interfacial, le rayon de goutte 4 la séparation et la
conduction thermique de la surface, en plus de quelques paramétres caractéristiques. En appliquant ce
qu'on appelle la région d’équilibre des petites gouttes, cette équation est résolue numériquement et on
présente les effets de ces paramétres sur le coefficient de transfert thermique.
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THEORETISCHE UNTERSUCHUNG DES MASSGEBLICHEN WIDERSTANDS BEI DER
TROPFENKONDENSATION

Zusammenfassung— Der Einflull der Wirmeleitfihigkeit des Wandmaterials auf den Wiarmeiibergang bei
der Tropfenkondensation wird theoretisch untersucht. Dabei wird eine grundlegende Differentialgleichung
abgeleitet, in welcher der Beitrag des Tropfchenwiderstandes der jeweiligen GroBenklasse zum
Wirmeibergangswiderstand bei der transienten Tropfenkondensation beriicksichtigt wird. Die Differ-
entialgleichung beschreibt den maBgeblichen Widerstand. der durch die ungleichférmige Verteilung der
Wirmestromdichte an der Oberflache verursacht wird. Anhand der in dimensionslose Form gebrachten
Gleichung erkennt man, dafl der mafigebliche Widerstand mit Hilfe einer Biot-Zahl ermittelt werden
kann. Diese wird mit dem Wirmeiibergangskoeffizienten an der Phasengrenze, dem Abreildurchmesser
der Tropfchen, der Warmeleitfihigkeit, des Oberflichenmaterials und einigen charakteristischen Pura-
metern gebildet. Um den EinfluB dieser Groflen auf den Wirmeiibergangskoeffizienten darzustellen, wird
diese Gleichung numerisch unter Verwendung des sogenannten Gleichgewichtsgebiets kleiner Tropfen
als TropfengroBenverteilung geldst.

TEOPETUUYECKOE UCCJIIEJOBAHUE COIPOTUBJIIEHUS CTATUBAHUIO I1PU
KAINEJBbHOM KOHJAEHCALIUU

AsnnoTaius—TeopeTuiecky HCCieayeTcs BIMSHHE TEIUIONPOBOAHOCTH MaTepHala KOHIEHCATOPa Ha
TEMIONEPEHOC NP KanelbHO# koHaekcanwu. C ydeToM BKJIafa CONPOTHBIICHHS Kamelb [ls KOHKpeT-
HOTO JHana3oHa MX pPa3MEpOB B TEPMHYECKOE CONMPOTHBIICHHE NPH HECTAIMOHAPOHOM KanenbHON KOH-
ICHCALMM BbIBOAMTCA An(epeHIranbHOe ypaBHeHHE, ONMCHIBAIOLIEE CONPOTHBJICHHE CTATHBAHHIO,
BbI3BAHHOE HEOJHOPOIHOCTBLIO TEIUIOBOrO NMOTOKA HA MOBEPXHOCTH. V3 3TOTO ypaBHEHHs, 3aINCAHHOTO
B 6e3pa3sMEpPHOM BHJE, HAWHAEHO, YTO CONPOTHBIICHHE CTATHBAHHIO MOXET ObITH pacCYMTaHoO C
nomMoumbio 4ucia Buo, koropoe onpenensercs koxpPHUMEHTOM TemjofiepeHoca Ha TpaHMle pa3iena,
paliycoM OTpBIBAIOIICHCS KaruM, KO3pOHUMEHTOM TEIIONPOBOJHOCTH MOBEPXHOCTH M HEKOTOPLIMH
XapaKTepHbIMH NapaMeTpaMH. JlIf yCTaHOBIEHNS BJINAHHUS YKA32HHLIX BEIMYMH Ha KO(OHUMEHT Ten-
JIONEPEHOCA AHHOE YPABHEHHE PELIAETCH YMCJIEHHO C MCMOJib30BAHHEM DPaBHOBECHOTO pacrpencsieHus
110 pa3Mepam B 061acTH MaJjlbIX Kalelb.



